
Chemical Equilibria in Reacting Systems



Consider a smelting process where a metal oxide is reduced by carbon in a furnace

Technical drawing of a smelting furnace Analytical drawing of a smelting furnace

Recall from thermodynamics that a phase is a homogeneous region that is a physically
separable part in a mixture of matter
There are mainly 5 phases in the smelting furnace at equilibrium: 
Solid carbon
Solid iron oxide
Liquid iron
Liquid slag
Gas mixture containing CO, CO2, O2

CO, CO2, O2

C Fe2O3 Fe

T, P

Slag



The number of variables that can be controlled in a system (i.e. the degrees of freedom) may 
change if the system is reacting

Non-reacting system Reacting system
Fe2O3+3C=2Fe+3CO
C+CO2=2CO

Phases: Solid iron oxide, gaseous air Solid carbon, solid iron oxide, liquid iron, gas mixture

Degrees of freedom= 2+4-2= 4 2+5-4-2= 1

Variables that are free to control:
Temperature, pressure Temperature
concentration of 2 speices

CO, CO2

C Fe2O3 Fe

T, PN2, CO2, O2

Fe2O3

T, P

𝐹 = 2 − 𝜋 + 𝑁 𝐹 = 2 − 𝜋 + 𝑁 − 𝑅



The number of variables which must be arbitrarily specified in order to fix the intensive state 
of a system at equilibrium is the difference between the total number of variables and the 
number of independent equations that can be written connecting these variables

Phase rule variables for a non-reacting system containing N chemical species and π phases in 
equilibrium:
Temperature T
Pressure P
N-1 mole fractions X for each phase (only N-1 because                     )
Total number = 

Phase equilibrium equations that may be written connecting the phase rule variables:
Chemical potential of each species in each phase should be equal

Total number = 𝜋 − 1 (𝑁)

Thus

Gibbs’ Phase Rule gives the degrees of freedom of the system

Presence of more phases decreases the number of independent intensive variables that must
be fixed to establish the state of a system

𝐹 = 2 + 𝑁 − 1 𝜋 − 𝜋 − 1 𝑁 = 2 − 𝜋 + 𝑁

 𝑋𝑖 = 1
2 + (𝑁 − 1)(𝜋)

𝜇𝛼
𝑖
= 𝜇
𝛽

𝑖
= ⋯ = 𝜇𝜋

𝑖
(𝑖 = 1, 2, … , 𝑁)



Phase rule variables for a reacting system containing R reactions, N chemical species and π
phases in equilibrium:
Temperature T
Pressure P
N-1 mole fractions X for each phase (only N-1 because )
Total number of phase rule variables = 

Phase equilibrium equations that may be written connecting the phase rule variables:
Chemical potential of each species in each phase should be equal

Gibbs free energy should be minimum at constant T and P for each reaction

𝑑 𝑛𝐺 = 𝑛𝑉 𝑑𝑃 − 𝑛𝑆 𝑑𝑇 + 𝜇𝑖 𝑑𝑛𝑖

Total number of equations relating the variables = 𝜋 − 1 𝑁 + R

Thus

R represents the number of independent chemical reactions at equilibrium

𝐹 = 2 + 𝑁 − 1 𝜋 − 𝜋 − 1 𝑁 − 𝑅 = 2 − 𝜋 + 𝑁 − 𝑅

 𝑋𝑖 = 1
2 + (𝑁 − 1)(𝜋)

𝜇𝛼
𝑖
= 𝜇
𝛽

𝑖
= ⋯ = 𝜇𝜋

𝑖
(𝑖 = 1, 2, … , 𝑁)

 𝜈𝑖𝜇𝑖 =
𝜕(𝑛𝐺)

𝜕𝜀
𝑇,𝑃

= 0 (𝑖 = 1, 2, … , 𝑁)



For a reacting system at equilibrium, the number of components and phases are larger than 
non-reacting system at equilibrium

Reacting system
Fe2O3+3C=2Fe+3CO
C+CO2=2CO

Phases: Solid carbon, solid iron oxide, liquid iron, gas mixture (4)

Components: carbon, iron, hematite, carbon monoxide, carbon dioxide (5)

Reactions: Fe2O3+3C=2Fe+3CO, C+CO2=2CO (2)

Degrees of freedom= 2+5-4-2= 1

Variables that are free to control:
Temperature

CO, CO2

C Fe2O3 Fe

T, P



Determining the number of independent chemical reactions in the system

Consider the reduction of iron oxide by coke in a smelting furnace

5 chemical species: C, CO, CO2,Fe, Fe2O3

4 phases: Solid carbon, solid iron oxide, liquid iron, gas mixture
Chemical equations for the formation of each compound present in the system from its 
constituent elements:
For CO – C+1/2O2=CO
For CO2 – C+O2= CO2

For Fe2O3 – 2Fe+3/2O2=Fe2O3

Combine the equations to eliminate the elements that are not considered a part of the system
2C+O2=2CO
CO2= C+O2 +
C+CO2=2CO

Repeat for iron oxide to eliminate O2: 2Fe+3/2O2=Fe2O3 + 3C+3/2O2=3CO  =  Fe2O3+3C=2Fe+3CO

CO, CO2

C Fe2O3 Fe

T, P

1
2



If another element is not present in the system, repeat the process to eliminate the element 
from the new set of equations

The set of equations is usually reduced by one equation for each element eliminated

Simultaneous elimination of two or more elements may occur

More than one set is possible depending on how the reduction procedure is carried out
All sets are equivalent and contain R equations regardless of the procedure

The reduction procedure also ensures that
𝑅
≥ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
− 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑛𝑜𝑡 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

For the reduction of iron oxide by coke, the following set of 2 equations is a complete set of 
independent reactions

C+CO2=2CO
Fe2O3+3C=2Fe+3CO

Compounds in the system:  CO, CO2, Fe2O3

Elements not part of the system: O2

2 ≥ 3 − 1



Phase equilibrium equations Chemical reaction equilibrium equations 

Special constraints may be placed on the system that allow additional equations to be written in 
certain conditions

For example the concentrations of gaseous phases may add up to atmospheric pressure, 
bringing the interrelating equation

Let δ be the number of equations resulting from special constraints
The general form of the phase rule for reacting systems is 

𝜇𝛼
𝑖
= 𝜇
𝛽

𝑖
= ⋯ = 𝜇𝜋

𝑖
 𝜈𝑖𝜇𝑖 = 0

Related to phase rule variables 
to determine independent variables

𝐹 = 2 − 𝜋 + 𝑁 − 𝑅 − 𝛿

𝑃𝐶𝑂 + 𝑃𝐶𝑂2 = 1



Example – Determine the degrees of freedom for a system of two miscible non-reacting species 
which exists as an azeotrope in vapor/liquid equilibrium

The system consists of two non-reacting species A and B in two phases liquid and vapor

The fact that the solution is an azeotrope introduces a special constraint to the system so that 

𝑥𝐴 = 𝑦𝐴

Just one phase rule variable among T, P or xA=yA may be arbitrarily specified

𝐹 = 2 − 𝜋 + 𝑁 − 𝑅 − 𝛿

𝐹 = 2 − 2 + 2 − 0 − 1 = 1



Example – Determine the degrees of freedom for a system prepared by partially decomposing 
CaCO3 to CaO

There is a single chemical reaction in the system:

CaCO3(s) = CaO(s) + CO2(g)     R=1

Chemical species in the system: CaCO3, CaO, CO2

Phases in the system: Solid Ca carbonate, solid Ca oxide, gaseous CO2

Number of compounds in the system: 3
Number of elements not part of the system: 3

There is a single degree of freedom
Calcium carbonate exerts a fixed decomposition pressure at a fixed temperature

If the furnace had an isolated atmosphere and it was aimed to consists of CO2 at 1 atm, 𝛿=1
𝐹 = 2 − 3 + 3 − 1 − 1 = 0

1 atm CO2 pressure could only be attained at a fixed temperature

𝐹 = 2 − 𝜋 + 𝑁 − 𝑅 − 𝛿

𝐹 = 2 − 3 + 3 − 1 − 0 = 1



Example – Determine the degrees of freedom for a system prepared by partially decomposing 
NH4Cl into gaseous species

There is a single chemical reaction in the system:
NH4Cl(s) = NH3(g) + HCl(g)     R=1

Chemical species in the system: NH4Cl, NH3, HCl
Phases in the system: Solid ammonium chloride, gaseous mixture containing NH3 and HCl
Number of compounds in the system: 3
Number of elements not part of the system: 3

However there is a special constraint: the requirement that the system be formed by gaseous 
decomposition means that the gas phase is equimolar in NH3 and HCl

yHCl=yNH3=0.5

NH4Cl has a fixed decomposition pressure at a fixed temperature

𝐹 = 2 − 𝜋 + 𝑁 − 𝑅 − 𝛿

𝐹 = 2 − 2 + 3 − 1 − 0 = 2

𝐹 = 2 − 2 + 3 − 1 − 1 = 1



Example – Determine the degrees of freedom for a system consisting of the gases CO, CO2, H2, 
H2O, CH4 in chemical equilibrium

Chemical species in the system: CO, CO2, H2, H2O, CH4

Phases in the system: Gaseous mixture containing CO, CO2, H2, H2O, CH4

Number of compounds in the system: 4
Number of elements not part of the system: 2

𝑅 ≥ 4 − 2
There should be at least 2 independent reaction in the system

Formation reactions
C+1/2O2=CO
C+O2=CO2

H2+1/2O2=H2O
C+2H2=CH4

Eliminate C Eliminate O2

CO=C+1/2O2 C+O2=CO2 CO2= CO+1/2O2 CH4+O2=CO2+2H2

C+O2=CO2 + CH4=C+2H2 + H2+1/2O2=H2O   + 2H2O=2H2+O2 +
CO+1/2O2=CO2 CH4+O2=CO2+2H2 CO2+H2=CO+H2O CH4+2H2O=CO2+4H2

𝐹 = 2 − 1 + 5 − 𝑅 − 0 = 6 − 𝑅

1 2



Example – NiO concentrate is reduced to Ni by excess carbon in a reduction furnace that is open 
to atmosphere at 1000 C
Show that NiO reduction is possible and it is completely used in the furnace

Ni s +
1

2
O2 g = NiO(s)

C s +
1

2
O2 g = CO(g)

C s + O2 g = CO2(g)

R ≥ 3 – 1 = 2 independent reactions

NiO s + C s = Ni s + CO(g) - ∆𝐺𝑜 1+ ∆𝐺𝑜 2
CO2 g + 𝐶 s = 2CO(g) - ∆𝐺𝑜 3+2 ∆𝐺𝑜2

CO, CO2

C NiO Ni

1000 C, 1 atm

∆𝐺𝑜 = −56310 + 20.57𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

∆𝐺𝑜 = −27340 + 20.50𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

∆𝐺𝑜 = −94490 + 41.13𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠



CO/CO2=1.23/98.77≈10-2



The equilibrium composition of species in a metal smelting furnace where the equilibrium state 
depends on two or more simultaneous chemical reactions can be found by equilibrium constant

First a set of independent reactions are determined

There is associated a reaction coordinate with each independent reaction and a separate 
equilibrium constant K

∆𝐺 = 0 = ∆𝐺𝑜 + 𝑅𝑇 ln𝐾

𝐾𝑗 = 𝑎𝑖
𝜈(𝑖,𝑗)

Where j is the reaction index and i is the reacting chemical species

Recall that activity of a species is 

𝑎𝑖 = 𝛾𝑖 ∗ 𝑥𝑖

The concentration 𝑥𝑖 is obtained from the extent of reactions which involve the species i

𝑥𝑖 =
𝑛𝑖
𝑛
=
𝑛𝑖0 +  𝑗 𝜈𝑖,𝑗𝜀𝑗

𝑛0 +  𝑗 𝜈𝑗𝜀𝑗



The set of equations relating the equilibrium constant K for a reaction to the reaction extent ε
are solved simultaneously to obtain the extent of each reaction and hence the concentrations

Example – Consider the combustion of 2 moles of carbon at 1000 K and 1 atm
2C 𝑠 + 2O2 𝑔 = 2CO2 𝑔 , ∆𝐺𝑜 = −394321 − 0.84𝑇 𝐽

∆𝐺𝑜 = −394321 − 0.84𝑇 𝐽 = −𝑅𝑇 ln𝐾
395161 𝐽 = −8314 ln𝐾
𝐾 = 4.38 ∗ 1020

𝐾 =
𝑎𝐶𝑂2
2

𝑎𝑂2
2 ∗ 𝑎𝐶

2 =
𝑃2𝑥𝐶𝑂2

2

𝑃2𝑥𝑂2
2 ∗ 𝛾2𝑥𝐶

2 ≈
𝑥𝐶𝑂2
2

𝑥𝑂2
2 ∗ 𝑥𝐶

2

𝜈𝐶𝑂2 = 2 𝑛𝐶𝑂2 = 2𝜀
𝜈𝐶 = −2 𝑛𝐶 = 𝑛0 − 2𝜀

𝜈𝑂2 = −2 𝑛𝑂2 = 𝑛0 − 2𝜀
𝜈𝑡𝑜𝑡𝑎𝑙 = −2 𝑛𝑡𝑜𝑡𝑎𝑙 = 2𝑛0 − 2𝜀

𝑥𝐶𝑂2 =
2𝜀

2𝑛0 − 2𝜀

𝑥𝐶 =
𝑛0 − 2𝜀

2𝑛0 − 2𝜀

𝑥𝑂2 =
𝑛0 − 2𝜀

2𝑛0 − 2𝜀

𝐾 =
4 − 2𝜀 22𝜀2

2 − 2𝜀
4 , 𝜀 ≈ 1.00

𝑛𝐶𝑂2 ≈ 2, 𝑥𝐶𝑂2 ≈ 2
𝑛𝐶 ≈ 0, 𝑥𝐶 ≈ 0
𝑛𝑂2 ≈ 0, 𝑥𝑂2 ≈ 0



Example – A bed of coal of 100 moles in a coal gasifier is fed with steam and air to produce a gas 
stream containing H2, CO, O2, H2O, N2, CO2, O2 at 1000 K and 20 atm

Calculate the equilibrium composition of the gas stream
Independent equations:

H2 g +
1

2
O2 g = H2O(g)

C s +
1

2
O2 g = CO(g)

C s + O2 g = CO2(g)

𝜈𝐻2𝑂 = 𝜀1 𝑛𝐻2𝑂 = 1 + 𝜀1
𝜈𝐶 = −𝜀2 − 𝜀3 𝑛𝐶 = 100 − 𝜀2 − 𝜀3
𝜈𝑂2 = −

1

2
𝜀1 −
1

2
𝜀2 − 𝜀3 𝑛𝑂2 = 0.5 −

1

2
𝜀1 −
1

2
𝜀2 − 𝜀3

𝜈𝐻2 = −𝜀1 𝑛𝐻2 = −𝜀1
𝜈𝐶𝑂 = 𝜀2 𝑛𝐶𝑂 = 𝜀2

𝜈𝐶𝑂2 = 𝜀3 𝑛𝐶𝑂2 = 𝜀3, 𝑛𝑁2 = 1.88, 𝑛𝑡𝑜𝑡𝑎𝑙 = 103.38 +
𝜀2−𝜀1

2

H2, CO, O2, H2O, N2, CO2, O2

C

1000 K, 20 atm

1 mole of stream

2.38 moles of air

𝐾1 =
𝑥𝐻2𝑂

𝑥𝑂2
1/2 ∗ 𝑥𝐻2

𝑃−1/2, ∆𝐺𝑜 = −164310 𝐽

𝐾2 =
𝑥𝐶𝑂

𝑥𝑂2
1/2 ∗ 𝑥𝐶

𝑃1/2, ∆𝐺𝑜 = −243740 𝐽

𝐾3 =
𝑥𝐶𝑂2
𝑥𝑂2 ∗ 𝑥𝐶

, ∆𝐺𝑜 = −396160 𝐽



𝑥𝐻2𝑂 =
1 + 𝜀1

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝑥𝐶 =
100 − 𝜀2 − 𝜀3

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝑥𝑂2 =
0.5 −
1
2
𝜀1 −
1
2
𝜀2 − 𝜀3

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝐾1 =

1 + 𝜀1 103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

1/2

𝑃−1/2

0.5 −
1
2 𝜀1 −
1
2 𝜀2 − 𝜀3

1/2

∗ −𝜀1

𝑃−1/2 ≈ 106

𝐾2 =

𝜀2 103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

1/2

0.5 −
1
2 𝜀1 −
1
2 𝜀2 − 𝜀3

1/2

∗ (100 − 𝜀2 − 𝜀3)

𝑃1/2 ≈ 108

𝐾3 =

𝜀3 ∗ 103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

0.5 −
1
2 𝜀1 −
1
2 𝜀2 − 𝜀3 ∗ (100 − 𝜀2 − 𝜀3)

≈ 1014

𝑥𝐻2 =
−𝜀1

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝑥𝐶𝑂 =
𝜀2

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝑥𝐶𝑂2 =
𝜀3

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2

𝑥𝑁2 =
1.88

103.38 −
2𝜀3 + 𝜀2 + 𝜀1
2



A reformulation of the problem is done by eliminating O2 from the reactions
Independent equations:

H2 g +
1

2
O2 g = H2O(g)

C s +
1

2
O2 g = CO(g)

C s + O2 g = CO2(g)

𝜈𝐻2𝑂 = −𝜀4 𝑛𝐻2𝑂 = 1 − 𝜀4
𝜈𝐶 = −𝜀4 − 𝜀5 𝑛𝐶 = 100 − 𝜀4 − 𝜀5
𝜈𝐻2 = 𝜀4 𝑛𝐻2 = 𝜀4
𝜈𝐶𝑂 = 𝜀4 + 2𝜀5 𝑛𝐶𝑂 = 𝜀4 + 2𝜀5
𝜈𝐶𝑂2 = −𝜀5 𝑛𝐶𝑂2 = 0.5 −𝜀5

𝑛𝑁2 = 1.88, 𝑛𝑡𝑜𝑡𝑎𝑙 = 103.38

𝐾4 =
𝑥𝐻2 ∗ 𝑥𝐶𝑂
𝑥𝐻2𝑂 ∗ 𝑥𝐶

𝑃, ∆𝐺𝑜 = −7820 𝐽

𝐾5 =
𝑥𝐶𝑂
2

𝑥𝐶𝑂 ∗ 𝑥𝐶
𝑃, ∆𝐺𝑜 = −4690 𝐽

H2O g + C s = H2 g + CO(g)

C s + CO2 g = 2CO(g)

𝑥𝐶 =
100 − 𝜀4 − 𝜀5
103.38

𝑥𝐻2𝑂 =
1 − 𝜀4
103.38

𝑥𝐻2 =
𝜀4
103.38

𝑥𝐶𝑂 =
𝜀4 + 2𝜀5
103.38

𝑥𝐶𝑂2 =
0.5 − 𝜀5
103.38

𝑥𝑁2 =
1.88

103.38



Iteration of the two equations for two unknowns by excel solver add-on gives

𝜀4 = 0.494 1.00 as T ↑
𝜀5 = 0.073 0.5 as T ↑

𝐾4 =
𝜀4 ∗ 𝜀4 + 2𝜀5

1 − 𝜀4 ∗ 100 − 𝜀4 − 𝜀5
𝑃 ≈ 2.561

𝐾5 =
0.5 − 𝜀5

2

𝜀4 + 2𝜀5 ∗ 100 − 𝜀4 − 𝜀5
𝑃 ≈ 1.758

𝑥𝐶 =
100 − 0.494 − 0.073

103.38
= 0.962

𝑥𝐻2𝑂 =
1 − 0.494

3.947
= 0.1282 excluding C

𝑥𝐻2 =
0.494

3.947
= 0.1252

𝑥𝐶𝑂 =
0.494 + 0.146

3.947
= 0.1621

𝑥𝐶𝑂2 =
0.5 − 0.073

3.947
= 0.1082

𝑥𝑁2 =
1.88

3.947
= 0.4763

H2O g + C s = H2 g + CO(g)

C s + CO2 g = 2CO(g)



Consider a binary mixture like the Cu and Ni alloy

𝑎𝑖 = 𝑥𝑖

𝑎𝑖 = ℎ𝑥𝑖

𝑎𝑖 = 𝛾𝑖𝑥𝑖

If 𝛾𝑖 > 1, solution positively deviates from Raoult’s law due to repulsion between two kinds of 
molecules

If 𝛾𝑖 < 1, solution negatively deviates from Raoult’s law due to attraction between two kinds of 
molecules

lim
𝑥𝑖→1

𝑑𝑎𝑖
𝑑𝑥𝑖
= 1

lim
𝑥𝑖→0

𝑑𝑎𝑖
𝑑𝑥𝑖
= ℎ

most of the concentration range



Determination of the activity coefficient in binary mixtures 

The activity coefficient of a dilute species in a binary mixture can be approximated by a Taylor 
series expansion

𝑦 =
1

0!
𝑦𝑥=𝑥𝑜 +

1

1!

𝑑𝑦

𝑑𝑥
𝑥 − 𝑥𝑜 +

1

2!

𝑑2𝑦

𝑑𝑥2
𝑥 − 𝑥𝑜

2 +⋯

Take ln 𝛾𝑖 = 𝑓(𝑥𝑖)
Expand around 𝑥𝑖 = 𝑥0≈0

ln 𝛾𝑖 = ln 𝛾𝑖
𝑜 +
1

1!

𝑑 ln 𝛾𝑖
𝑑𝑥

𝑥𝑖=𝑥0

𝑥𝑖 +
1

2!

𝑑2 ln 𝛾𝑖
𝑑𝑥2

𝑥𝑖=𝑥0

𝑥𝑖
2 +⋯

ln 𝛾𝑖 = ln 𝛾𝑖
𝑜 + 𝜖𝑖

𝑖
𝑥𝑖 + 𝜌𝑖

𝑖
𝑥𝑖
2 +⋯

y

x

Taylor series

xo xi

ln γi

ln γo
i

x0



Determination of the activity coefficient in dilute multicomponent metallic solutions

Consider liquid steel containing various impurities less than 1%
Fe – Si – C – Mn – S – P – Cu – Ni - …  𝑎𝐹𝑒 ≈ 𝑥𝐹𝑒

expanded around xFe»1

ln 𝛾𝑖

= ln 𝛾𝑖
𝑜 +
1

1!

𝑑 ln 𝛾𝑖
𝑑𝑥𝑖 𝑥𝐹𝑒=1

𝑥𝑖 +
1

1!

𝑑 ln 𝛾𝑖
𝑑𝑥𝑗 𝑥𝐹𝑒=1

𝑥𝑗 +⋯+
1

2!

𝑑2 ln 𝛾𝑖
𝑑𝑥𝑖
2
𝑥𝐹𝑒=1

𝑥𝑖
2

+
1

2!

𝑑2 ln 𝛾𝑖
𝑑𝑥𝑗
2
𝑥𝐹𝑒=1

𝑥𝑗
2 +⋯

ln 𝛾𝑖 = ln 𝛾𝑖
𝑜 + 𝜖𝑖

𝑖
𝑥𝑖 + 𝜖𝑖

𝑗
𝑥𝑗 +⋯+ 𝜌𝑖

𝑖
𝑥𝑖
2 + 𝜌𝑖

𝑗
𝑥𝑗
2 +⋯

ln 𝛾𝑖 = ln 𝛾𝑖
𝑜 + 

𝑗

𝜖𝑖
𝑗
𝑥𝑗 + 

𝑗

𝜌𝑖
𝑗
𝑥𝑗
2 +⋯

Example – Consider liquid steel of the composition Fe – 0.2% C – 0.5% Mn – 0.1% Si
Calculate the activity coefficient and activity of Si 

𝑎𝑆𝑖 = 𝛾𝑆𝑖𝑥𝑆𝑖

ln 𝛾𝑖 = 𝑓(𝑥𝑖 , 𝑥𝑗 , … )

ln 𝛾𝑖 = 𝜖𝑆𝑖
𝑆𝑖
𝑥𝑆𝑖 + 𝜖𝑆𝑖

𝐶
𝑥𝐶 + 𝜖𝑆𝑖

𝑀𝑛
𝑥𝑀𝑛

ln 𝛾𝑆𝑖
𝑜 = 0 since 𝛾𝑆𝑖

𝑜 = 1



Example – TiO2 is one of the troublesome impurities in iron ores. When titaniferrous ores are 
charged into the blast furnace, titanium is distributed between the metal and the slag in the 
hearth in accord with the following reaction

TiO2 s + 2C s = Ti s + 2CO(g)
TiN is formed in the nitrogen rich atmosphere in the hearth of the blast furnace if the titanium 
content of the metal exceeds a certain limiting value
Formation of TiN is not desired as TiN melts at 2950 C and hence it remains as solid in the 
liquid metal and slag, which decreases their fluidity and gets collected at the bottom of the 
hearth, limiting hearth capacity
Care should be taken not to include much TiO2 in the charge

Ti s + O2 g = TiO2 s ∆𝐺𝑜 = −224900 + 42.24𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

Ti s +
1

2
N2 g = TiN s ∆𝐺𝑜 = −80380 + 22.79𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s +
1

2
O2 g = CO g ∆𝐺𝑜 = −27340 − 20.50𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s = C(%) ∆𝐺𝑜 = 5100 − 10.00𝑇 Ti s = 𝑇𝑖 % ∆𝐺𝑜 = −7440 − 10.75𝑇

N2, CO 

1773 K

600 kg coke
92% C
8% SiO2

Ore
60% Fe
5% SiO2, TiO2

1000 kg Pig iron
4.5% C
1% Si
Ti

Slag
40% SiO2

TiO2

PN2= 1 atm
PCO= 1.8 atm



Calculate the limiting Ti content of the metal (i.e. the titanium content below which TiN will not 
form) in weight% in the hearth of a blast furnace at 1500 C
Interaction coefficients: eTi

Ti=0.013, eTi
C=-0.3, eTi

Si=0, eC
Ti=0, eC

C=0.2, eC
Si=0.08

Atomic weights: Si=28, C=12, O=16, Ti=48, N=14, Fe=56

Ti s + O2 g = TiO2 s ∆𝐺𝑜 = −224900 + 42.24𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

Ti s +
1

2
N2 g = TiN s ∆𝐺𝑜 = −80380 + 22.79𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s +
1

2
O2 g = CO g ∆𝐺𝑜 = −27340 − 20.50𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s = C(%) ∆𝐺𝑜 = 5100 − 10.00𝑇 Ti s = 𝑇𝑖 % ∆𝐺𝑜 = −7440 − 10.75𝑇

N2, CO 

1773 K

600 kg coke
92% C
8% SiO2

Ore
60% Fe
5% SiO2

TiO2

1000 kg Pig iron
4.5% C
1% Si
Ti

Slag
40% SiO2

TiO2

PN2= 1 atm
PCO= 1.8 atm



Calculate the corresponding equilibrium activity of TiO2 in the slag based on pure solid TiO2 as 
the standard state
Interaction coefficients: eTi

Ti=0.013, eTi
C=-0.3, eTi

Si=0, eC
Ti=0, eC

C=0.2, eC
Si=0.08

Atomic weights: Si=28, C=12, O=16, Ti=48, N=14, Fe=56

Ti s + O2 g = TiO2 s ∆𝐺𝑜 = −224900 + 42.24𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

Ti s +
1

2
N2 g = TiN s ∆𝐺𝑜 = −80380 + 22.79𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s +
1

2
O2 g = CO g ∆𝐺𝑜 = −27340 − 20.50𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s = C(%) ∆𝐺𝑜 = 5100 − 10.00𝑇 Ti s = Ti % ∆Go = −7440 − 10.75T

N2, CO 

1773 K

600 kg coke
92% C
8% SiO2

Ore
60% Fe
5% SiO2

TiO2

1000 kg Pig iron
4.5% C
1% Si
Ti

Slag
40% SiO2

TiO2

PN2= 1 atm
PCO= 1.8 atm



If the weight fraction of TiO2 in the slag equals its activity in the slag, calculate the maximum 
permissible TiO2 content of the ore
Interaction coefficients: eTi

Ti=0.013, eTi
C=-0.3, eTi

Si=0, eC
Ti=0, eC

C=0.2, eC
Si=0.08

Atomic weights: Si=28, C=12, O=16, Ti=48, N=14, Fe=56

Ti s + O2 g = TiO2 s ∆𝐺𝑜 = −224900 + 42.24𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

Ti s +
1

2
N2 g = TiN s ∆𝐺𝑜 = −80380 + 22.79𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s +
1

2
O2 g = CO g ∆𝐺𝑜 = −27340 − 20.50𝑇 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠

C s = C(%) ∆𝐺𝑜 = 5100 − 10.00𝑇 Ti s = 𝑇𝑖 % ∆𝐺𝑜 = −7440 − 10.75𝑇

N2, CO 

1773 K

600 kg coke
92% C
8% SiO2

Ore
60% Fe
5% SiO2

TiO2

1000 kg Pig iron
4.5% C
1% Si
Ti

Slag
40% SiO2

TiO2

PN2= 1 atm
PCO= 1.8 atm


